It's just in the name! Accurate data is helpful, and correct, but reproducible data is all of that, and is able to be given to other people through different sources! At least, that's what my understanding of them are. Hope it helps!
On an electromagnetic spectrum, one of its noticeable trends is that the wavelength increases with decreasing energy and the wavelength decrease with increasing energy. Furthermore, gamma rays have high energy and short wavelengths while microwaves have low energy and long wavelengths.
Answer:
F = [MLT⁻²]
Explanation:
Force = ma
m (mass) = [M]
a (acceleration) = [LT⁻²]
F(force) = m x a = [MLT⁻²]
Momentum depends upon the variables mass and velocity. In terms of an equation, the momentum of an object is equal to the mass of the object times the velocity of the object.
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume