Explanation:
It is given that,
Mass of the ball, m = 0.06 kg
Initial speed of the ball, u = 56 m/s
Final speed of the ball, v = -34.5 m/s (opposite direction)
(a) Let J is the impulse delivered to the ball by the racquet. It is equal to the change in momentum of the object as :


J = -5.43 kg-m/s
(b) The work done by the racquet on thee ball is equal to the change in kinetic energy as :


W = -58.372 Joules
In physics, there are already derived equation that are based on Newton's Law of Motions. The rectilinear motions at constant acceleration have the following equations:
x = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
x is the distance travelled
v₁ is the initial velocity
v₂ is the final velocity
a is the acceleration
t is the time
Now, we solve first the second equation. Since it mentions that the car comes eventually to a stop, v₂ = 0. Then,
-5 = (0-v₁)/t
-5t = -v₁
v₁ = 5t
We use this new equation to substitute to the first one:
x = v₁t + 1/2 at²
15 = 5t(t) + 1/2(-5)t²
15 = 5t² - 5/2 t²
15 = 5/2 t²
5t² = 30
t² = 30/5 = 6
t = √6 = 2.45
Therefore, the time it took to travel 15 m at a deceleration of -5 m/s² is 2.45 seconds.
Answer:
Sporulation
the formations of spores from vegetative cells during unfavorable environmental conditions
Fragmentation
The asexual reproduction, where the body of the organism breaks into smaller pieces
Water is a slow conductor of heat. Land absorbs heat quicker, so the sand next to the lake will heat up quicker than water.