1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
7

What is heat that is transferred by movement of a fluid

Physics
1 answer:
goldenfox [79]3 years ago
3 0
Three ways
Conductions in solids
Convection of fluids
And radiation through anything that will allow radiation to pass.


Hope this help
You might be interested in
A battery is used to power a flashlight. When the flashlight is in use, what type of energy is lost during energy transformation
diamong [38]

Answer:

The answer is chemical energy

4 0
3 years ago
Read 2 more answers
Closed circuit
VMariaS [17]

A. the light bulb goes out once the circuit is open since it causes the flow of electricity to cut off. the light bulb dosent get the energy it needs to light up

Explanation:

B. a simple example of this in our every day life is a light switch. when you switch the light on then the circuit is closed and the energy transfers to the light bulb, when u switch the light off then you cut off the lights source of energy which causes the light to turn off.

5 0
2 years ago
Design a solution that can monitor and minimize the melting of sea ice caused by human activity
dedylja [7]

Answer:

CO2 emissions from fossil fuel burning should be minimized at all cost. The CO2 are gotten when the carbons from hydrocarbons react with air(oxygen). This gas erodes the ozone layer which makes the melting of ice caps faster due to increased amount of heat radiations on the earth. This is the only best and permanent solution to the reduction of the amount of heat rays on the earth which is a global problem.

Objects which reflects back the sunrays could also be inserted into the sea to prevent the melting of the ice caps.

7 0
3 years ago
The drag on a pitched baseball can be surprisingly large. Suppose a 145 g baseball with a diameter of 7.4 cm has an initial spee
kupik [55]

Answer:

<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>v_f = 35.3 m/s</h2>

Explanation:

Part a)

As we know that drag force is given as

F = \frac{C_d \rho A v^2}{2}

C_d = 0.35

A = \frac{\pi d^2}{4}

A = \frac{\pi(0.074)^2}{4}

A = 4.3 \times 10^{-3} m^2

v = 40.2 m/s

so we have

F = \frac{0.35\times 1.2 (4.3 \times 10^{-3})(40.2)^2}{2}

F = 1.46 N

So acceleration of the ball is

a = \frac{F}{m}

a = \frac{1.46}{0.145}

a = 10.1 m/s^2

Part B)

As per kinematics we know that

v_f^2 - v_i^2 = 2 a d

v_f^2 - 40.2^2 = 2(-10.1)(18.4)

v_f = 35.3 m/s

4 0
4 years ago
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is th
Darya [45]

Answer:

1.92 x 10⁻¹²J

Explanation:

The magnetic force from the magnetic field gives the circulating protons gives the particle the necessary centripetal acceleration to keep it orbiting round the circular path. And from Newton's second law of motion, the force(F) is equal to the product of the mass(m) of the proton and the centripetal acceleration(a). i.e

F = ma

Where;

a = \frac{v^2}{r}             [v = linear velocity, r = radius of circular path]

=> F = m\frac{v^2}{r}           ------------(i)

We also know that the magnitude of this magnetic force experienced by the moving charge (proton) in a magnetic field is given by;

F = q v B sin θ       ----------(ii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = the angle between the velocity and the magnetic field.

Combining equations (i) and (ii) gives

m\frac{v^2}{r} = q v B sin θ           [θ = 90° since the proton is orbiting at the maximum orbital radius]

=> m\frac{v^2}{r} = q v B sin 90°

=> m\frac{v^2}{r} = q v B

Divide both side by v;

=> m\frac{v}{r} = qB

Make v subject of the formula

v = \frac{qBr}{m}

From the question;

B = 1.25T

m = mass of proton = 1.67 x 10⁻²⁷kg

r = 0.40m

q = charge of a proton = 1.6 x 10⁻¹⁹C

Substitute these values into equation(iii) as follows;

v = \frac{(1.6*10^{-19})(1.25)(0.4)}{(1.67*10^{-27})}

v = 4.79 x 10⁷m/s

Now, the kinetic energy, K, is given by;

K = \frac{1}{2}mv²

m = mass of proton

v = velocity of the proton as calculated above

K = \frac{1}{2}(1.67*10^{-27} * (4.79 * 10^7)^2 )

K = 1.92 x 10⁻¹²J

The kinetic energy is 1.92 x 10⁻¹²J

8 0
3 years ago
Other questions:
  • When a boat is placed in liquid, two forces act on the boat. Gravity pulls the boat down with a force equal to the weight of the
    11·1 answer
  • Why does a balloon stick to a wall questions and problems answers?
    9·1 answer
  • A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to
    13·2 answers
  • You notice the flagpole at school vibrating in the breeze. You count the vibrations and find that
    10·1 answer
  • Please answer these!
    15·1 answer
  • A car has momentum, p=10880 kg m/s, east. If the car is traveling east at 16 m/s, its mass must be [m] kg.
    14·2 answers
  • Give two examples of spatial interference which can be easily observed.
    13·1 answer
  • Thermal energy is transferred to a substance. Which change can occur?
    6·1 answer
  • A 52.3 kg student is standing at rest on roller skates when another student throws a bag of 3.5 kg bag of sand. After the studen
    7·1 answer
  • Help me please
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!