Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
Solar energy is that energy remaining from the sun that we store in solar panels. This energy is produced because of its nucleus.
1) yeasts example is Sacchromyces Cerevisiae which is a baker's or brewer's yeast
2) molds example is Rhizopus a type of mold that appears on old bread
3) mushrooms example is Amanita Phalloides also known as the "Death Cap " is a very poisonous mushroom and should not be ingested
Explanation:
Given that,
The initial velocity of a skater is, u = 5 m/s
She slows to a velocity of 2 m/s over a distance of 20 m.
We can find the acceleration of skater. It is equal to the rate of change of velocity. So, it can be calculated using third equation of motion as follows :

a = acceleration

So, her acceleration is
and she is deaccelerating. Also, her initial velocity is given i.e. 5 m/s.