Answer:
(4,2)
Step-by-step explanation:
its where the point intersects which is (4,2)
Answer:
123414
Step-by-step explanation:
12
213
213
32
$1337 * 0.04 * 14 = <span>748.72
answer is </span><span>B)
$748.72 </span>
Answer: -5.428
Step-by-step explanation:
33 + 5 + 7z = 0
38 + 7z = 0
7z = -38
z = -38/7
Answer:
The surface area of capsule is 235.5 mm².
Step-by-step explanation:
Given that,
Diameter = 5 mm
Total length = 15 mm
We need to calculate the radius of each hemisphere
Using formula of radius of hemisphere
![\text{radius of each hemisphere}=\text{radius of cylinder}](https://tex.z-dn.net/?f=%5Ctext%7Bradius%20of%20each%20hemisphere%7D%3D%5Ctext%7Bradius%20of%20cylinder%7D)
![r=\dfrac{5}{2}](https://tex.z-dn.net/?f=r%3D%5Cdfrac%7B5%7D%7B2%7D)
![r=2.5\ mm](https://tex.z-dn.net/?f=r%3D2.5%5C%20mm)
We need to calculate the length of cylinder
Using formula of length
Length of cylinder = Total length of capsule-radius of left hemisphere- radius of right hemisphere
![\text{length of cylinder}=15-2.5-2.5](https://tex.z-dn.net/?f=%5Ctext%7Blength%20of%20cylinder%7D%3D15-2.5-2.5)
![\text{length of cylinder}=10\ mm](https://tex.z-dn.net/?f=%5Ctext%7Blength%20of%20cylinder%7D%3D10%5C%20mm)
We need to calculate the surface area of capsule
Using formula of surface area of capsule
![\text{surface area of capsule}=\text{Curved surface area of cylinder}+\text{surface area of left hemisphere}+\text{surface area of right hemisphere}](https://tex.z-dn.net/?f=%5Ctext%7Bsurface%20area%20of%20capsule%7D%3D%5Ctext%7BCurved%20surface%20area%20of%20cylinder%7D%2B%5Ctext%7Bsurface%20area%20of%20left%20hemisphere%7D%2B%5Ctext%7Bsurface%20area%20of%20right%20hemisphere%7D)
![\text{surface area of capsule}=2\pi rl+2\pi r^2+2\pi r^2](https://tex.z-dn.net/?f=%5Ctext%7Bsurface%20area%20of%20capsule%7D%3D2%5Cpi%20rl%2B2%5Cpi%20r%5E2%2B2%5Cpi%20r%5E2)
![\text{surface area of capsule}=2\pi rl+4\pi r^2](https://tex.z-dn.net/?f=%5Ctext%7Bsurface%20area%20of%20capsule%7D%3D2%5Cpi%20rl%2B4%5Cpi%20r%5E2)
Put the value into the formula
![\text{surface area of capsule}=2\times3.14\times2.5\times10+4\times3.14\times(2.5)^2](https://tex.z-dn.net/?f=%5Ctext%7Bsurface%20area%20of%20capsule%7D%3D2%5Ctimes3.14%5Ctimes2.5%5Ctimes10%2B4%5Ctimes3.14%5Ctimes%282.5%29%5E2)
![\text{surface area of capsule}=235.5\ mm^2](https://tex.z-dn.net/?f=%5Ctext%7Bsurface%20area%20of%20capsule%7D%3D235.5%5C%20mm%5E2)
Hence, The surface area of capsule is 235.5 mm².