Answer:
The friction of the string and its pivotal anchor point cannot be eliminated. The precise measurement of the length of the pendulum is difficult to take by using meter sticks or rulers. The value of the acceleration due to gravity g in the locality is not constant and must be obtained from reliable sources.
KINEMATICS
Uniform or constant motion in a straight line (rectilinear). Speed or velocity constant and/or acceleration constant. If motion is up and down and/or has an up and down component then acceleration omn earth will be g. g is about 10m/s/s.
speed = distance/time
velocity = displacement/time
s=distance ... u=initial speed ... v = final speed ... a = acceleration ... t = time
v=u+at
v^2=u^2+2as
s=ut+1/2at^2
Answer:
Explanation:
Using the law of conservation of momentum;

here;
There is a need for conservation of the total momentum that occurred before and after the collision.
So;
= mass of cart X
= mas 9f cart Y
= velocity of cart X (before collision)
= velocity of cart Y (before collision)
= velocity of cart X (after collision)
= velocity of cart Y (after collision)
So;

because the mass is identical and v represents the velocity of both carts.
Now;
= 2 m/s
= 0 ( at rest)
∴
m(2) = (2m)v
v = 1 m/s
Thus, we can see from the graphical image attached below that the velocity of X reduces to 1 m/s after collision with cart Y.
Length of the copper rod = 2.5 meters
Speed at which sound travels through copper = 3560 meter per second
Let us assume the time taken
by sound to cover the given distance = x seconds
We already know that
Speed = Distance/ Time
Then
Time = Distance/ Speed
x = 2.5/3560 seconds
= 0.0007 seconds.
This can ve done by hitting one end of the rod and then receiving the sound at the other end and using the stop clock to measure the time taken.