Answer:
5 m
Explanation:
From the question,
v = λf....................... Equation 1
Where v = speed of the sound wave, λ = wavelength of the sound wave, f = frequency of the sound wave.
make λ the subject of the equation
λ = v/f..................... Equation 2
Given: v = 150 cm/s = 1.5 m/s, f = 0.3 hz.
Substitute these values into equation 2
λ = 1.5/0.3
λ = 5 m.
Answer:
B
Explanation:
<em>A. His speed is 0 m/s
</em>
<em>B. His velocity is 12 m/s
</em>
<em>C. His velocity is 0 m/s
</em>
<em>D. His acceleration is 12 m/s</em>
Total distance traveled by John = 120 + 120 = 240 meters
Total time taken by John to cover the distance = 10 + 10 = 20 s
<em>Average speed of John = total distance traveled/total time taken</em>
= 240/20 = 12 m/s
Hence, the average speed/velocity of John throughout the journey is 12 m/s.
The correct option is B.
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
39.6832 pounds would be your answer