<span>"prevent the engine from over speeding the armature"
hopes this help :) :D :)</span>
Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Explanation: To find the answer, we need to know more about the Orbital and escape velocities.
<h3>
What is Orbital and Escape velocity?</h3>
- Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
- The expression for orbital velocity near to the surface of earth will be,

- Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
- The expression for orbital velocity will be,

- If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
- We need about twice the raw speed to go to the sun than to leave the sun.
Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Learn more about orbital and escape velocity here:
brainly.com/question/28045208
#SPJ4
Answer:


Explanation:
m = Mass of each the cars = 
= Initial velocity of first car = 3.46 m/s
= Initial velocity of the other two cars = 1.4 m/s
v = Velocity of combined mass
As the momentum is conserved in the system we have

Speed of the three coupled cars after the collision is
.
As energy in the system is conserved we have

The kinetic energy lost during the collision is
.
When a person collides with an inflated air bag, the impact forces the molecules of gas in the bag closer together. The compression of the gas absorbs the energy of the impact.
The SI unit for acceleration is m/s2 ( D)