Answer:
the 6 om is brighter because 6-3=3
Explanation:
Answer:

Explanation:
Temperature of the house, 
Convert to rankine, 
Heat is extracted at 40°F i.e 
Calculate the coefficient of performance of the heat pump, COP

The minimum power required to run the heat pump is given by the formula:
...............(*)
Where the heat losses from the house, 
Substituting these values into * above

The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Answer:
a) about 20.4 meters high
b) about 4.08 seconds
Explanation:
Part a)
To find the maximum height the ball reaches under the action of gravity (g = 9.8 m/s^2) use the equation that connects change in velocity over time with acceleration.


In our case, the initial velocity of the ball as it leaves the hands of the person is Vi = 20 m/s, while thw final velocity of the ball as it reaches its maximum height is zero (0) m/s. Therefore we can solve for the time it takes the ball to reach the top:

Now we use this time in the expression for the distance covered (final position Xf minus initial position Xi) under acceleration:

Part b) Now we use the expression for distance covered under acceleration to find the time it takes for the ball to leave the person's hand and come back to it (notice that Xf-Xi in this case will be zero - same final and initial position)

To solve for "t" in this quadratic equation, we can factor it out as shown:

Therefore there are two possible solutions when each of the two factors equals zero:
1) t= 0 (which is not representative of our case) , and
2) the expression in parenthesis is zero:

Answer:
<em>Explicado a continuación</em>
Explanation:
Hay una pequeña diferencia conceptual entre la capacidad y el volumen de un objeto, a saber:
El volumen hace referencia al espacio que ocupa un objeto, mientras que la capacidad hace referencia al espacio que este contiene. Calcular el volumen de un cuerpo es medir cuánto ocupa mientras que calcular su capacidad es medir cuánto cabe en él.
En la práctica, ambos conceptos son usados indistintamente, ya que tienen unidades equivalentes.
El volumen tiene unidades de longitud al cubo, como por ejemplo:

y la capacidad se suele expresar en litros o unidades derivadas: litro, mililitro, centilitro, etc.
Como mencionamos, hay equivalencia engre los dos grupos de unidades. Entre las más conocidas están:
