Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.
Answer:
1429.32 mmHg
Explanation:
Initial Pressure P1 = 3000.0mmHg
Initial Temperature T1 = 500.0°C + 273 = 573 K ( Converting to kelvin temperature)
Final Temperature T2 = 0.00°C + 273 = 273 K ( Converting to kelvin temperature)
Final Pressure P2 = ?
The pressure of a given amount of gas is directly proportional to the absolute temperature provided volume remains constant.
This is given by the mathematical expression;
P1 / T1 = P2 / T2
Inserting the values;
3000 / 573 = P2 / 273
P2 = 273 * 3000 / 573
P2 = 1429.32 mmHg
Answer:
43.868 J
Explanation:
Kinetic energy of a body is the amount of energy possessed by a moving body. The SI unit of kinetic energy is the joule (kg⋅m²⋅s⁻²).
According to classical mechanics, kinetic energy = 1/2 m·v²
Where, m= mass in kg and v= velocity in m/s
Given: m = 19.2 lb and v = 7.10 miles/h
Since, 1 lb= 0.453592 kg
∴ m = 19.2 lb = 19.2 × 0.453592 kg = 8.709 kg
Also, 1 mi = 1609.34 m and 1 h = 3600 sec
∴ v = 7.10 mi/h = 7.10 × 1609.34 m ÷ 3600 sec = 3.174 m/sec
Therefore, <u>kinetic energy of the goose</u> = 1/2 m·v² = 1/2 × (8.709 kg)× (3.174 m/sec)² = 43.868 J
Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Answer:
The body has levels of organization that build on each other. Cells make up tissues, tissues make up organs, and organs make up organ systems. The function of an organ system depends on the integrated activity of its organs.