Because there is no gravity
Y EQUALS X - 1 I MIGHT BE WRONG
Answer:
Heat flows from faster molecules to slower molecules when they collide.
Explanation:
logics
Answer:
7.41 × 10⁻⁵
Explanation:
Let's consider the basic dissociation reaction of trimethylamine (CH₃)N).
(CH₃)N + H₂O = (CH₃)NH⁺ + OH⁻
According to Brönsted-Lowry, in this reaction (CH₃)N is a base and (CH₃)NH⁺ is its conjugate acid. The pKb for (CH₃)N is 9.87. We can calculate the pKa of (CH₃)NH⁺ using the following expression.
pKa + pKb = 14
pKa = 14 - pKb = 14 - 9.87 = 4.13
Then, we can calculate the acid dissociation constant for (CH₃)NH⁺ using the following expression.
pKa = -log Ka
Ka = antilog - pKa = antilog -4.13 = 7.41 × 10⁻⁵
Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]