Answer:
Here's what I get
Explanation:
Ethylamine has an N atom with a lone pair of electrons.
It can act as a Brønsted-Lowry base and accept a proton from water and become an ethylammonium ion.
The structure of the ion is shown below (there is a C atom at each of the four-way bond intersections).
Hello! I hope this helps
Answer: ATP ( adenosine triphosphate) is considered as the energy currency of the cell as it stores energy in the cell. It is an example of chemical potential energy because energy is stored in the high energy containing phosphoanhydride bond (between phosphate molecules in the ATP).
The upper surface of the zone of saturation is called the water table
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
= 90.25 kJ/mol
= 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
=?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 - 
Solving
-
=75.5 kJ/mol - 2*90.25 kJ/mol
-
=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>