Answer: 4.5 moles of
can be made from complete reaction of 3.0 moles of Al.
Explanation:
The given reaction equation is as follows.

This shows that 2 moles of Al reacts with 6 moles of HCl. So, the amount of HCl required to react with 1 mole Al is three times the amount of HCl.
Therefore, 3 moles of Al will react with 9 moles of HCl to give 3 moles of
and
moles of
.
The reaction equation now will be as follows.

The moles
can also be written as 4.5 moles.
Thus, we can conclude that 4.5 moles of
can be made from complete reaction of 3.0 moles of Al.
Answer:
Well, it could be B or D but I would say B.
Explanation:
The structure of an organelle is usually fit to its function so it is most likely B.
Hope this helps!
Answer:
for one mole of C2H6 there are 7/2 mole of O2 required. so for4. 50 moles you require 4.50 x 7/2 = 15.75 moles of O2.
Explanation:
i hope it's helpful
81. There is 1 carbon, 2 chlorine and fluorine atoms in Freon 12. To draw them it forms a cross with C in the middle and Cl and F both on the opposite side.
Cl
l
F - C- F
l
Cl
82. Freon-12 and Freon-14 are called halocarbons or just halides.
The mass of Calcium required to complete this reaction is 4.008 g.
- Law of conservation of mass states that In a closed system, mass cannot be produced or destroyed, but it can be changed from one form to another.
- The mass of the chemical constituents before a chemical reaction is equal to the mass of the constituents after the reaction.
- In several disciplines, including chemistry, mechanics, and fluid dynamics, the idea of mass conservation is widely applied.
In the given reaction mass of product after completion of reaction is 13.614 g that means total mass of constituents before reaction should also be 13.614.
So,
mass of Ca + mass of O₂ + mass of S = mass of CaSO4
Ca + 6.400 g + 3.206 g = 13.614 g
mass of Ca = 13.614 - 9.606 = 4.008 g
Therefore, by law of conservation of mass 4.008 g of Ca is required for the completion of the reaction.
Learn more about mass conservation here:
brainly.com/question/2030891
#SPJ9