The osmotic pressure of a solution is a colligative property, which means that it depends on the number of particles of solute in the solution.
Formula: Osmotic pressure = MRT, where M is the molarity of the solution, R is the universal constant of ideal gases and T is the absolute temperature of the solution.
So, the answer is the option .: the osmotic pressure of a solution increases as the number of particles of solute in the solution increases.
Answer: ₉₈²⁵³Cf
253 is a superscript to the left of the symbol, Cf, which represents the mass number, and 98 is a subscript to the left of the same symbol, which represents the atomic number.
Explanation:
1) The alpha decay equation shows that the isotope Fm - 257, whose nucleus has 100 protons and 157 neutrons, emitted an alpha particle (a nucleus with 2 protons and 2 neutrons).
2) Therefore:
i) the mass number decreased in 4, from 257 to 257 - 4 = 253.
2) the atomic number decreased in 2, from 100 to 100 - 2 = 98.
3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253.
4) The item that completes the given alpha decay reaction is:
₉₈²⁵³ Cf.
5) The complete alfpha decay reaction is:
₁₀₀²⁵⁷ Fm → ₉₈²⁵³Cf + ₂⁴He
You can verify the mass balance:
257 = 253 + 4, and
100 = 98 + 2
Answer:
Batteries store chemical energy
Explanation:
1) divide each percentage by the relative atomic mass of the element
2) divide all results by the smallest number
3)multiply by a whole number to get the simplest whole number ratio (if necessary)
that is to say:
Na S O
32.37÷23 22.58÷32 45.05÷16
= 1.407 = 0.7056 = 2.816 (to 4 significant figures)
the smallest number here is 0.7056 so:
1.407÷0.7056 0.7056÷0.7056 2.816÷0.7056
=1.99 approx.2 = 1 3.99 approx. 4
here there is no need to carry out step 3 as ratio obtained is already a simplest whole number ratio
so empirical formula is: Na₂SO₄