Answer:
100% +100%= 60+100%=90 - 50% is 75 so 250%
Step-by-step explanation:
Answer: graph E.
A geometric sequence can be written as:
![a_{n} = a_{1} \cdot r^{(n - 1)}](https://tex.z-dn.net/?f=%20a_%7Bn%7D%20%3D%20a_%7B1%7D%20%5Ccdot%20r%5E%7B%28n%20-%201%29%7D%20%20)
where:
a₁ = first term = 4
r = ratio = 0.5
Substituting the numbers, we have:
![a_{n} = 4 \cdot (\frac{1}{2})^{n-1}](https://tex.z-dn.net/?f=%20a_%7Bn%7D%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7Bn-1%7D%20)
or else
![f(x) = 4 \cdot (\frac{1}{2})^{x - 1}](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7Bx%20-%201%7D%20)
This is an exponential function with base less than 1. Therefore, we can exclude graph C (which depicts a linear function), and graphs A and D (which depict an exponential function with base greater than 1).
In order to choose between graph B and E, let's evaluate the function in two different points:
![f(1) = 4 \cdot (\frac{1}{2})^{1 - 1} = 4](https://tex.z-dn.net/?f=%20f%281%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B1%20-%201%7D%20%3D%204%20)
![f(2) = 4 \cdot (\frac{1}{2})^{2 - 1} = 4 \cdot \frac{1}{2} = 2](https://tex.z-dn.net/?f=%20f%282%29%20%3D%204%20%5Ccdot%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B2%20-%201%7D%20%3D%204%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%3D%202%20)
Therefore, we need to look for the graph passing through the points (1, 4) and (2, 2). That is graph E.
Answer:
y=10x-15
Step-by-step explanation:
with the points given you know x=2 and y=5
make a new point called (x,y)
now use the formula (y-5)/(x-2)=10 (10 being the gradient)
y-5 = 10(x-2)
y-5=10x-20
add 5 to both sides
y-5+5=10x-20+5
y=10x-15
-2
8(17-12)/ -2(8+2).
A negative and a negative equals a plus
8(5) / -2(10)
40 / -20
= -2