Answer:
50 kg
Explanation:
Given,
Force ( F ) = 100 N
Acceleration ( a ) = 2 m/s^2
To find : Mass ( m ) = ?
Formula : -
F = ma
m = F / a
= 100 / 2
m = 50 kg
Therefore, the mass of the object is 50 kg.
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
Answer:
Explanation:
a ) Momentum of first cart = mass x velocity
= 3 x 4.6 =+13.8 kg m /s
Momentum of second cart = 1.3 x - 1.9 = - 2.47 kg m /s
Total momentum = 13.8 - 2.47
= +11.33 kg m /s
b )
Let the velocity of first cart be v at the moment when second cart was at rest
total momentum = 3 x v + 0 = 3 v
Applying conservation of momentum law
3 v = +11.33
v = +3.77 m /s
Answer:
i have this qustion and i am in middle school you in
Explanation:
Answer:
The frog's horizontal velocity is 0.2 m/s.
Explanation:
To solve this problem, we must first remember what velocity is and how we solve for it. Velocity can be solved for using the formula x/t, where x represents horizontal distance and t represents time (in seconds), that it takes to travel this distance. If we plug in the given numbers for these variables and solve, we get the following:
v = x/t
v = 0.8m/4s
v = 0.2 m/s
Therefore, the correct answer is 0.2 m/s. We can verify that these units are correct because the formula calls for distance divided by time, so meters per second is a sensible answer.
Hope this helps!