False. it's depend on g -constant.
<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again. by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>
Answer:
in the parallel connection the light bulbs shine less than in the series connection
Explanation:
In a series circuit the current through the whole circuit is the same, therefore the power (brightness) of each bulb is
P = i² R
where R is the resistance of each bulb and i the current of the circuit.
If we connect the light bulbs and the cells in parallel, the current in the circuit is the sum of the east that passes through each light bulb,
i = i₁ + i₂
if the two light bulbs are the same
i = 2 i₁
i₁ = i / 2
so the power of each bulb is is
P = i₁² R
P = R i² / 4
P = ¼ P_initial
Therefore we see that in the parallel connection the light bulbs shine less than in the series connection
Given from the problem :mass m = 413 kg;coefficient of friction u = 0.0163;acceleration due to gravity g = 9.8 m/s2;inclined angle @1 = 14.3;inclined angle @2 = 4.69;distance travelled d = 175 m;applied fore F = 410 N; the component of the force from the donkey in the direction of motion isF2 = F1
[email protected]= 397.2964498768165 N
Fy = N - mg
[email protected] = 0N = mg
[email protected] = 4037.964151113007 NFx = F2 - mg
[email protected] - f = mahere f = u N=65.8188156631420141
F2 - mg
[email protected] - f = maa = F2 - mg
[email protected] - f/ m=0.31923412183075155 m/s^2
work done by donkeyW = F2 d=69526.8787284428875 J