Answer:
protein
Explanation:
protein is a very large complex macro-molecule that requires amino acids
Echo sounding is a type of SONAR used to determine the depth of water by transmitting sound pulses into water. The time interval between emission and return of a pulse is recorded, which is used to determine the depth of water along with the speed of sound in water at the time.
Answer:
Radius of the loop is 0.18 m or 18 cm
Explanation:
Given :
Current flowing through the wire, I = 45 A
Magnetic field at the center of the wire, B = 1.50 x 10⁻⁴ T
Number of turns in circular wire, N = 1
Consider R be the radius of the circular wire.
The magnetic field at the center of the current carrying circular wire is determine by the relation:
Here μ₀ is vacuum permeability constant and its value is 4π x 10⁻⁷ Tm/A.
Substitute the suitable values in the above equation.
R = 0.18 m
Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.
Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.