Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Answer:(a)360N,(b)171N,(c)2.702m
Explanation:
(a)Maximum Friction Force =
=360 N


(b)Moment about Ground Point




(c)

Here maximum friction force can be 360 N
Therefore 
Where x is the maximum distance moved by man along the ladder

740x=2000
x=2.702m
Explanation:
1. Force applied on an object is given by :
F = W = mg
(a) A 160 lb human being, F = 160 lb
g = acceleration due to gravity, g = 32 ft/s²


m = 5 kg
(b) A 1.9 lb cockatoo, F = 1.9 lb


m = 0.059 kg
2. (a) A 2300 kg rhinoceros, m = 2300 kg

(b) A 22 g song sparrow, m = 22 g = 0.022 kg

Hence, this is the required solution.
The answer is D. time really does pass more slowly in a rest frame of reference relative to a frame of reference that is moving
The awnser is. 1728000 kilometers