Answer: (A) 3.0=A
Explanation: In order to explain this problem we have to use the OHM law, given by: V=R*I
Besides, we have to consider the resitance equivalent for a parallel connection. This is given by:
1/Re=1/R1+1/R2
If we connect the same resistance, the equivalent resistance is R/2.
Initlally the current is 1.5 A when one resistance is connected to the batttery. When a second resistance with the same value is connected in parallel to the battery, we have V=Re*Ifinal= (R/2)*Ifinal
also we know that V=R*Iinitial so Iinitial=V/R
then Ifinal= 2*V/R=2*Iinitial
The required answer is 66.925 m which is the distance travelled by the car.
Answer:
The induced voltage in the coil is 0.25 V.
Explanation:
It is given that,
Area of a square coil is 2 cm or 0.02 m
Number of turns in the wire is 2500
A uniform magnetic field perpendicular to its plane is turned on and increases to 0.25 T during an interval of 1.0 s.
We need to find the induced voltage in the coil. According to Faraday's law, the induced emf in the coil is given by the rate of change on magnetic flux. So,

So, the induced voltage in the coil is 0.25 V.
It is important to have the international system of units 'cause <span>it can be used by scientists everywhere around the world, and they will be able to understand each other with more accuracy.
In short, Your Answer would be Option D
Hope this helps!</span>