Use the rules of logarithms and the rules of exponents.
... ln(ab) = ln(a) + ln(b)
... e^ln(a) = a
... (a^b)·(a^c) = a^(b+c)
_____
1) Use the second rule and take the antilog.
... e^ln(x) = x = e^(5.6 + ln(7.5))
... x = (e^5.6)·(e^ln(7.5)) . . . . . . use the rule of exponents
... x = 7.5·e^5.6 . . . . . . . . . . . . use the second rule of logarithms
... x ≈ 2028.2 . . . . . . . . . . . . . use your calculator (could do this after the 1st step)
2) Similar to the previous problem, except base-10 logs are involved.
... x = 10^(5.6 -log(7.5)) . . . . . take the antilog. Could evaluate now.
... = (1/7.5)·10^5.6 . . . . . . . . . . of course, 10^(-log(7.5)) = 7.5^-1 = 1/7.5
... x ≈ 53,080.96
Step-by-step explanation: To solve this absolute value inequality,
our goal is to get the absolute value by itself on one side of the inequality.
So start by adding 2 to both sides and we have 4|x + 5| ≤ 12.
Now divide both sides by 3 and we have |x + 5| ≤ 3.
Now the the absolute value is isolated, we can split this up.
The first inequality will look exactly like the one
we have right now except for the absolute value.
For the second one, we flip the sign and change the 3 to a negative.
So we have x + 5 ≤ 3 or x + 5 ≥ -3.
Solving each inequality from here, we have x ≤ -2 or x ≥ -8.
Answer:
You didn't include any graphs.
Step-by-step explanation:
Answer:
i think its b
Step-by-step explanation: