Part A: The solution is ![(-0.923,5.692)](https://tex.z-dn.net/?f=%28-0.923%2C5.692%29)
Part B: The point
is not in the solution set.
Explanation:
Part A: The given inequalities are
and ![x](https://tex.z-dn.net/?f=x%3C3%20y-18)
The solution can be determined by solving the two inequalities by substitution method.
Changing inequalities to equality, we have,
and ![3 x+4 y=20](https://tex.z-dn.net/?f=3%20x%2B4%20y%3D20)
Let us substitute
in the equation
, we get,
![3 (3y-18)+4 y=20](https://tex.z-dn.net/?f=3%20%283y-18%29%2B4%20y%3D20)
![9y-54+4y=20](https://tex.z-dn.net/?f=9y-54%2B4y%3D20)
![13y=74](https://tex.z-dn.net/?f=13y%3D74)
![y=5.692](https://tex.z-dn.net/?f=y%3D5.692)
Substituting
in
, we get,
![x=3 (5.692)-18](https://tex.z-dn.net/?f=x%3D3%20%285.692%29-18)
![=17.076-18](https://tex.z-dn.net/?f=%3D17.076-18)
![x=-0.923](https://tex.z-dn.net/?f=x%3D-0.923)
Thus, the solution set is ![(-0.923,5.692)](https://tex.z-dn.net/?f=%28-0.923%2C5.692%29)
Part B: Now, we shall determine whether the point
is in the solution set.
Let us substitute the point
in the inequalities
and
, we get,
![3 (3)+4 (7)>20](https://tex.z-dn.net/?f=3%20%283%29%2B4%20%287%29%3E20)
![9+28>20](https://tex.z-dn.net/?f=9%2B28%3E20)
![37>20](https://tex.z-dn.net/?f=37%3E20)
Also, substituting
in
, we get,
![3](https://tex.z-dn.net/?f=3%3C3%20%287%29-18)
![3](https://tex.z-dn.net/?f=3%3C21-18)
![3](https://tex.z-dn.net/?f=3%3C3)
Since, the point
does not satisfy one of the inequality
, the solution set does not contain the point ![(3,7)](https://tex.z-dn.net/?f=%283%2C7%29)
Thus, the point
is not in the solution set.