Answer:
Yes.
Step-by-step explanation:
Just like normal algebra, you factor our the common factor, in this case, 5.
Thus,

<h2><em><u>REFERS </u></em><em><u>TO </u></em><em><u>THE </u></em><em><u>ATTACHMENT</u></em><em><u>.</u></em></h2>
<h2><em><u>PLEASE</u></em><em><u> </u></em><em><u>MARK</u></em><em><u> ME</u></em><em><u> AS</u></em><em><u> BRAINLIEST</u></em><em><u>:</u></em></h2>
Answer:
5 1/6
Step-by-step explanation:
Rewriting our equation with parts separated
=8+2/4−3−1/3
Solving the whole number parts
8−3=5
Solving the fraction parts
2/4−1/3=?
Find the LCD of 2/4 and 1/3 and rewrite to solve with the equivalent fractions.
LCD = 12
6/12−4/12=2/12
Reducing the fraction part, 2/12,
2/12=1/6
Combining the whole and fraction parts
5+1/6=5 1/6
Answer:
a =13/5
Step-by-step explanation:
f(x) = 6x − 5
f(5a) = 6*5a − 5=73
30a -5 = 73
Add 5 to each side
30a -5+5 = 73+5
30a =78
Divide by 30
30a/30 = 78/30
a =13/5
Sin (A + B) = sin A cos B + cos A Sin B
<span>Cos (A - B) = cos A cos B + sin A sin B </span>
<span>=> (SinACosB+ CosASinB) (CosACosB +SinASinB) </span>
<span>=>SinACosACos^2B+Sin^2ACosBSinB+Cos^2A... </span>
<span>=>SinACosA(Cos^2B+Sin^2B) +SinBCosB(Sin^2A+Cos^2A) </span>
<span>we know that Sin^2+Cos^2=1 </span>
<span>=>SinACosA(1)+SinBCosB(1) </span>
<span>=SinACosA+SinBCosB </span>
<span>Proved
</span>