Answer: D
Explanation:
When an object falls gravity is pulling down on it and is picking up speed, but as it gains speed air resistance becomes a faster. Air resistance increases with speed. And that force keeps it from accelerating eventually the object will pick up speed such that the force due to air resistance will keep it from getting any more speed at that point force due to air resistance is equal to its weight (mg) and the net force is equal to zero so it won’t accelerate any more at that point it is said to be moving in terminal velocity.
When an object has reached terminal velocity, it will have a constant velocity
<span>let the fsh jump with initial velocity (u) in direction (angle p) with horizontal
it can cross and reach top of trajectory if its top height h = 1.5m
and horizontal distance d = (1/2) Range
--------------------------------------...
let t be top height time
at top height, vertical component of its velocity =0
vy = 0 = u sin p - gt
t = u sin p/g
h = [u sin p]*t - 0.5 g[t[^2
1.5 = u^2 sin^2 p/g - u^2 sin^2 p/2g
u^2 sin^2 p/2g = 1.5
u^2 sin^2 p = 1.5*2*9.8 = 29.4
u sin p = 5.42 m/s >>>>>>>>>>>>>>> V-component
=====================
t = HALF the time of flight
d = (1/2) Range (R) = (1/2) [2 u^2 sin p cos p/g]
1 = u^2 sin p cos p/g
u sin p * u cos p = 9.8
5.42 * u cos p = 9.8
u cos p = 1.81 m/s >>>>>>>>>>>>> H-component
check>>
u = sqrt[u^2 cos^2 p + u^2 sin^2 p] = 5.71 m/s
u < less than fish's potential jump speed 6.26 m/s
so it will able to cross</span>
Answer:
X: Low potential energy
Y: High Potential energy
Z: Flow of electrons
Explanation: From the figure, it's obvious that Z is the flow of electrons, as shown by the arrow demonstrating the direction of the flow. Because of this, we can easily nullify choices B and C.
From the figure, we can notice that Y has more energy stored and X has a lot less, so you can conclude that Y has high potential energy while X has low potential energy.