I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Calcium chloride contains ionic bonds.
Pennies contain metallic bonds.
Hydrochloric acid contains covalent bonds.
You're welcome.
The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0
Answer:
A saturated solution
Explanation:
A saturated solution is one that contains the most amount of solute that can be dissolved in it at a given temperature
An example of a saturated solution is carbonated water, which readily gives off bubbles of carbon dioxide gas from areas within the solution to the region above the top surface of the gas in liquid solution
A saturation solution of salt in water can be created by continuing to dissolve salt in a given amount of water until it can no longer dissolve any more salt. However, heating the saturated salt solution, increases the amount of salt that can be dissolved.
Therefore, a solution that contains all of the solute it can normally hold at a given temperature is <u>a saturated solution</u>
the higher concentration of molecules, the faster a reaction can occur