Answer:
Explanation:
Given that,
Current in loops are
i1 = 12A
i2 = 20A
The loops are 3.4cm apart
The magnetic field at the center is found to be zero, so when want to find the radius of bigger loop
Magnetic Field is given as
B= μoi/2πr
Where,
μo is a constant = 4π×10^-7 Tm/A
r is the distance between the two wires
i is the current in the wires
B is the magnetic field
NOTE
Field due to large loop should be equal to the smaller loop.
B1 = B2
μo•i1 / 2π•r1 = μo•i2 / 2π•r2
Then, μo, 2π cancels out, so we have
i1 / r1 = i2 / r2
Make r2 subject of formula
i1•r2 = i2•r1
r2 = i2•r1 / i2
r2 = 20×3.4/12
r2 = 5.67cm
The radius of the bigger loop is 5.67cm.
The final velocity of the truck is found as 146.969 m/s.
Explanation:
As it is stated that the lorry was in standstill position before travelling a distance or covering a distance of 3600 m, the initial velocity is considered as zero. Then, it is stated that the lorry travels with constant acceleration. So we can use the equations of motion to determine the final velocity of the lorry when it reaches 3600 m distance.
Thus, a initial velocity (u) = 0, acceleration a = 3 m/s² and the displacement s is 3600 m. The third equation of motion should be used to determine the final velocity as below.

Then, the final velocity will be

Thus, the final velocity of the truck is found as 146.969 m/s.
This is something u are going to have to do
Answer:
In economics, elasticity is the measurement of the percentage change of one economic variable in response to a change in another.
An elastic variable (with an absolute elasticity value greater than 1) is one which responds more than proportionally to changes in other variables. In contrast, an inelastic variable (with an absolute elasticity value less than 1) is one which changes less than proportionally in response to changes in other variables. A variable can have different values of its elasticity at different starting points: for example, the quantity of a good supplied by producers might be elastic at low prices but inelastic at higher prices, so that a rise from an initially low price might bring on a more-than-proportionate increase in quantity supplied while a rise from an initially high price might bring on a less-than-proportionate rise in quantity supplied.
Elasticity can be quantified as the ratio of the percentage change in one variable to the percentage change in another variable, when the latter variable has a causal influence on the former. A more precise definition is given in terms of differential calculus. It is a tool for measuring the responsiveness of one variable to changes in another, causative variable. Elasticity has the advantage of being a unitless ratio, independent of the type of quantities being varied. Frequently used elasticities include price elasticity of demand, price elasticity of supply, income elasticity of demand, elasticity of substitution between factors of production and elasticity of intertemporal substitution.
Elasticity is one of the most important concepts in neoclassical economic theory. It is useful in understanding the incidence of indirect taxation, marginal concepts as they relate to the theory of the firm, and distribution of wealth and different types of goods as they relate to the theory of consumer choice. Elasticity is also crucially important in any discussion of welfare distribution, in particular consumer surplus, producer surplus, or government surplus.
In empirical work an elasticity is the estimated coefficient in a linear regression equation where both the dependent variable and the independent variable are in natural logs. Elasticity is a popular tool among empiricists because it is independent of units and thus simplifies data analysis.
A major study of the price elasticity of supply and the price elasticity of demand for US products was undertaken by Joshua Levy and Trevor Pollock in the late 1960s..