Answer:
78g
Explanation:
Given parameters:
Mass of oxygen gas = 16g
Mass of potassium oxide = 94g
Unknown:
Mass of reacting potassium = ?
Solution:
To solve this problem, we need to obtain a balanced reaction equation. Then determine the number of moles of the reactant and use it to find that of the other one.
Balanced equation:
4K + O₂ → 2K₂O
Number of moles of reacting oxygen;
Number of moles = 
molar mass of O₂ = 2 x 16 = 32g/mole
Number of moles =
= 0.5mole
From the reaction equation;
4 mole of K reacted with 1 mole of O₂;
x mole of K will react with 0.5 mole of O₂
Therefore, 4 x 0.5 = 2 moles of potassium.
Mass of potassium = number of moles x molar mass
Molar mass of potassium = 39g
Mass of potassium = 2 x 39 = 78g
If it is lower, it heats faster, if it's higher, it takes longer to heat.
Now for this problem, what is given is a 40 Newtons which would represent the force to be applied to the object, and a distance of 10 meters after the application of the said force. When these two combine, work is done. The unit for work is Joules and this is what we are looking for. The formula to get Joules or for work would be the force applied to the object multiplied by the distance that it travelled after the application of the force. It looks like this
work = force x distance
Joules = Newtons x meter
so let us substitute the variables to their corresponding places
Joules = 40 N x 10 m
Joules = 400 J
So the answer to this question would be C. 400 J
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²
Answer:
Y W Z X, B
Explanation:
It wants you to figure out the correct order starting from oldest to newest.