Answer:
is the time taken by the car to accelerate the desired range of the speed from zero at full power.
Explanation:
Given:
Range of speed during which constant power is supplied to the wheels by the car is
.
- Initial velocity of the car,

- final velocity of the car during the test,

- Time taken to accelerate form zero to 32 mph at full power,

- initial velocity of the car,

- final desired velocity of the car,

Now the acceleration of the car:



Now using the equation of motion:


is the time taken by the car to accelerate the desired range of the speed from zero at full power.
Lower. Water expands on lower temperatures, meaning less molecules in 1 m3, thus making it less dense
Answer:
The person feels cool at first because the swimming pool water is usually cool and he/she has that water on his body. But when it evaporates, the cool air directly touches his body and that's why he/she feels cold.
Thank You! Please mark me Brainliest!
Answer:
S = 1/2 Vo t + 1/2 a t^2 = d time for particle to travel distance d
F = E q force acting on particle
a = F / m = E q / m
d = Vo t + E q / (2 m) t^2
One would need to solve the quadratic equation shown to find the time t
t^2 + (2 m) / E q * V0 t - (2 m) / E q * d = 0
or t^2 + A V0 t - A d = 0 where A = (2 m) / E q
Answer:
Tension of the wire(T) = 169 N
Explanation:
Given:
f = 65Hz
Length of the piano wire (L) = 2 m
Mass density = 5.0 g/m² = 0.005 kg/m²
Find:
Tension of the wire(T)
Computation:
f = v / λ
65 = v / 2L
65 = v /(2)(2)
v = 260 m/s
T = v² (m/l)
T = (260)²(0.005/2)
T = 169 N
Tension of the wire(T) = 169 N