I think a type B fire extinguisher should be on board a vessel with a permanently installed fuel tank.
All vessels are required to have a type B fire extinguisher on board if one or more of the following conditions exists. That is; Inboard engine, vessel length of 26 feet or longer, enclosed living spaces, closed storage compartments in which flammable or combustible materials may be stored, permanently installed fuel tanks, and also closed compartments where portable fuel tanks may be stored.
A. False. If it is high tide in one place on Earth, the place exactly opposite to it will also have a <em>high</em> tide.
The gravitational attraction of the Moon and the inertia of the oceans cause <em>two tidal bulges </em>on opposite sides of the Earth.
B. True. Cassini used flybys of Venus, Earth and Jupiter as slingshots to reach Saturn.
C. True. The whole solar system moves around the galaxy.
D. True. If a planet’s gravity is not strong enough, the molecules in its atmosphere will have enough kinetic energy to escape into space.
E. False. The <em>mass of an object is constant</em>, but its <em>weight changes</em> according to the gravity of the planet.
F. False. To find the mass of an object, <em>divide</em> its weight by gravity.
or weight = mass × gravity
∴ <em>Mass = weight/gravity
</em>
Answer:
Is an isotope of Cu (Copper)
Explanation:
Remember that the mass number will tell you the number of protons and neutrons. If you have the mass number(65) and the number of neutrons (36), you just need to subtract: 65 - 36 = 29 the number or protons.
As this is a neutral isotope, that means that is going to have the same number of protons and electrons, that is 29.
Answer:
All cells have these four parts in common: a plasma membrane, cytoplasm, ribosomes, and DNA
Explanation:
can i get brainliest plz
Here we apply the Clausius-Clapeyron equation:
ln(P₁/P₂) = ΔH/R x (1/T₂ - 1/T₁)
The normal vapor pressure is 4.24 kPa (P₁)
The boiling point at this pressure is 293 K (P₂)
The heat of vaporization is 39.9 kJ/mol (ΔH)
We need to find the vapor pressure (P₂) at the given temperature 355.3 K (T₂)
ln(4.24/P₂) = 39.9/0.008314 x (1/355.3 - 1/293)
P₂ = 101.2 kPa