Rate = 3.37x10-3 M^-1 min-1 [A]^2 and the initial concentration of a is 0.122M.
A rate law indicates the rate of a chemical response depends on reactant concentration. For a response inclusive of the price regulation commonly has the form rate = ok[A]ⁿ, in which okay is a proportionality constant known as the fee regular and n is the order.
The charge of a chemical response is, perhaps, its maximum crucial asset because it dictates whether or not a reaction can arise all throughout an entire life. knowing the charge regulation, an expression concerning the price to the concentrations of reactants can assist a chemist to modify the response conditions to get an extra suitable rate.
half-life is the time taken for the radioactivity of a substance to fall to 1/2 its authentic cost whereas implies existence is the common life of all the nuclei of a particular risky atomic species.
Learn more about rate law here:-brainly.com/question/7694417
#SPJ4
Answer:
The catalyzed reaction will take 2.85 seconds to occur.
Explanation:
The activation energy of a reaction is given by:

For the reaction without catalyst we have:
(1)
And for the reaction with the catalyst:
(2)
Assuming that frequency factor (A) and the temperature (T) are constant, by dividing equation (1) with equation (2) we have:

Since the reaction rate is related to the time as follow:
![k = \frac{\Delta [R]}{t}](https://tex.z-dn.net/?f=%20k%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%7D%7Bt%7D%20)
And assuming that the initial concentrations ([R]) are the same, we have:
![\frac{k_{1}}{k_{2}} = \frac{\Delta [R]/t_{1}}{\Delta [R]/t_{2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B2%7D%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%2Ft_%7B1%7D%7D%7B%5CDelta%20%5BR%5D%2Ft_%7B2%7D%7D%20)


Therefore, the catalyzed reaction will take 2.85 seconds to occur.
I hope it helps you!
Answer:
your simpal answer is 177.32