Answer:
1) They are the same line so they match equally bc they are measuring the same thing just one is more specific than the other
2) Sonar measures all depths at every possible point and maps it including all the gaps in between the 5cm apart the ocean floor is. The difference between the points could be a cliff or a smooth decline.
Answer:
Moles of H₂S needed = 6.2 mol
Moles of SO₂ produced = 6.2 mol
Explanation:
Given data:
Number of moles of O₂ = 9.3 mol
Moles of H₂S needed = ?
Moles of SO₂ produced = ?
Solution:
Chemical equation:
2H₂S + 3O₂ → 2SO₂ + 2H₂O
Now we will compare the moles of oxygen with H₂S.
O₂ : H₂S
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
Now we will compare the moles of SO₂ with both reactant.
O₂ : SO₂
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
H₂S : SO₂
2 : 2
6.2 : 6.2 mol
So 6.2 moles of SO₂ are produced.
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Δmc
2
For one reaction:
Mass Defect =Δm
=2(m
H
)−m
He
−m
n
=2(2.015)−3.017−1.009
=0.004 amu
1 amu=931.5 MeV/c
2
Hence,
E=0.004×931.5 MeV=3.724 MeV
E=3.726×1.6×10
−13
J=5.96×10
−13
J
For 1 kg of Deuterium available,
moles=
2g
1000g
=500
N=500N
A
=3.01×10
26
Energy released =
2
N
×5.95×10
−13
J
=8.95×10
13
Answer:
1.52atm is the pressure of the gas
Explanation:
To solve this question we must use the general gas law:
PV = nRT
<em>Where P is pressure in atm = Our incognite</em>
<em>V is volume = 50.5L</em>
<em>n are moles of gas = 3.25moles</em>
<em>R is gas constat = 0.082atmL/molK</em>
<em>And T is absolute temperature = 288.6K</em>
To solve pressure:
P = nRT / V
P = 3.25mol*0.082atmL/molK*288.6K / 50.5L
P = 1.52atm is the pressure of the gas