Answer:
<u>The standard enthalpy of reaction = -4854.7kJ</u>
<u>The difference: </u>ΔH-ΔE = Δ(PV) = Δn.R.T = <u>9910.288 J ≈ 9.91 kJ</u>
Explanation:
<u>The balanced chemical equation for the combustion of heptane</u>:
C₇H₁₆ (l) + 11 O₂ (g) → 7 CO₂ (g) + 8 H₂O (l)
Given: The standard enthalpy of formation (
) for: C₇H₁₆ (l) = -187.8 kJ/mol, O₂ (g) = 0 kJ/mol, CO₂ (g) = -393.5 kJ/mol, H₂O (l) = -286 kJ/mol
<u>To calculate the standard enthalpy of reaction (
) can be calculated by the Hess's law</u>:
![\Delta H _{r}^{\circ } = \left [\sum \nu \cdot\Delta H _{f}^{\circ }(products) \right ] - \left [\sum \nu\cdot\Delta H _{f}^{\circ }(reactants) \right ]](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%5Csum%20%5Cnu%20%5Ccdot%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%28products%29%20%20%5Cright%20%5D%20-%20%5Cleft%20%5B%5Csum%20%5Cnu%5Ccdot%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%28reactants%29%20%20%5Cright%20%5D)
Here,
is the stoichiometric coefficient
⇒ 
![\left [ 7\times \Delta H _{f}^{\circ }\left (CO_{2}\right )+ 8\times \Delta H _{f}^{\circ }\left (H_{2}O \right )\right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%207%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28CO_%7B2%7D%5Cright%20%29%2B%208%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28H_%7B2%7DO%20%5Cright%20%29%5Cright%20%5D)
![- \left [1\times \Delta H _{f}^{\circ }\left (C_{7}H_{16}\right ) +11\times \Delta H _{f}^{\circ }\left (O_{2} \right ) \right ]](https://tex.z-dn.net/?f=-%20%5Cleft%20%5B1%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28C_%7B7%7DH_%7B16%7D%5Cright%20%29%20%2B11%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28O_%7B2%7D%20%5Cright%20%29%20%5Cright%20%5D)
![=\left [ 7\times \left (-393.5 kJ/mol \right )+ 8\times \left (-286 kJ/mol \right )\right ]](https://tex.z-dn.net/?f=%3D%5Cleft%20%5B%207%5Ctimes%20%5Cleft%20%28-393.5%20kJ%2Fmol%20%5Cright%20%29%2B%208%5Ctimes%20%5Cleft%20%28-286%20kJ%2Fmol%20%5Cright%20%29%5Cright%20%5D)
![-\left [1\times \left (-187.8 kJ/mol \right ) +11\times \left (0 kJ/mol \right ) \right ]](https://tex.z-dn.net/?f=-%5Cleft%20%5B1%5Ctimes%20%5Cleft%20%28-187.8%20kJ%2Fmol%20%5Cright%20%29%20%2B11%5Ctimes%20%5Cleft%20%280%20kJ%2Fmol%20%5Cright%20%29%20%5Cright%20%5D)
⇒ ![\Delta H _{r}^{\circ } = \left [ \left (-2754.5 \right )+ \left (-2288 \right )\right ]\left -[ \left (-187.8 \right ) +\left (0 \right )\right ]](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%20%5Cleft%20%28-2754.5%20%5Cright%20%29%2B%20%5Cleft%20%28-2288%20%5Cright%20%29%5Cright%20%5D%5Cleft%20-%5B%20%5Cleft%20%28-187.8%20%5Cright%20%29%20%2B%5Cleft%20%280%20%5Cright%20%29%5Cright%20%5D)
⇒ ![\Delta H _{r}^{\circ } = \left [ -5042.5 ]\left -[ -187.8] = \left ( -4854.7kJ \right )](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%20-5042.5%20%5D%5Cleft%20-%5B%20-187.8%5D%20%3D%20%5Cleft%20%28%20-4854.7kJ%20%5Cright%20%29)
<u>To calculate the difference: </u>ΔH-ΔE=Δ(PV)
We use the ideal gas equation: P.V = n.R.T
⇒ ΔH-ΔE=Δ(PV) = Δn.R.T
Given: Temperature:T = 298K, R = 8.314 J⋅K⁻¹⋅mol⁻¹
Δn = number of moles of gaseous products - number of moles of gaseous reactants = (7)- (11) = (-4)
⇒ ΔH-ΔE=Δ(PV) = Δn.R.T = (-4 mol) × (8.314 J⋅K⁻¹⋅mol⁻¹) × (298K) = <u>9910.288 J = 9.91 kJ</u> (∵ 1 kJ = 1000J )
Answer:
Explanation:
Taking into account the definition of Avogadro's Number, the correct answers are:
1 mole of any element contains 6.023×10²³ atoms
1 mole of any compound contains 6.023×10²³ molecules
You have to know that Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole.
Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression.
Avogadro's number applies to any substance, because the number of elementary units in a mole of a substance is, by definition, a constant that does not depend on the material or the type of particle considered.
So, in this case, the correct answers are:
1 mole of any element contains 6.023×10²³ atoms
1 mole of any compound contains 6.023×10²³ molecules
hope that help you mark me as brinilylist pls
Most are made from crystals and minerals.
The balanced chemical equation for the production of chromium metal from the reaction of chromium(ll) nitrate reacts with a strip of zinc is:
3 Zn + 2 Cr(NO₃)₃ → 2 Cr + 3 Zn(NO₃)₂
This is a redox reaction, which <u>is a chemical reaction in which one or more electrons are transferred between the reagents</u>, causing a change in their oxidation states. In the proposed reaction, Cr oxidation state goes from +3 to 0, becoming metallic chromium, while Zn goes from being Zn⁰ to Zn²⁺.
<u>The mass of chromium metal produced in the above reaction will be,</u>
425.0 mL x
x
x
x
= 5.52 g
So, the mass of chromium metal produced when 425.0mL of 0.25M chromium(ll) nitrate reacts with a strip of zinc that remains in excess is 5.52 g of Cr.