Answer:
The most reactive compound is:<u> Phenol </u> because the<u> electron donating</u> character of the <u>alcohol group</u> increases the rate of the reaction.
The least reactive compound is <u>nitrobenzene</u>
because the <u>electron withdrawing</u> character of the<u> nitro group</u> decreases the rate of the reaction.
Explanation:
- PHENOL-: Any of a group of organic compounds with a hydroxyl (OH) group bound to a carbon atom in an aromatic ring is known as phenol. The word phenol is also the basic name for its simplest member, monohydroxybenzene (C6H5OH), also known as benzenol or carbolic acid, in addition to being the common name for the entire family.
- ELECTRON DONATING CHARACTER-: Via the carbon atom it is bound to, an electron donating group (EDG) has the net effect of increasing electron density in a molecule. EDGs alter a molecule's reactivity by increasing electron density on neighboring carbon atoms: EDGs make nucleophiles stronger.
- ALCOHOL GROUP-:Each of a class of organic compounds that have one or more hydroxyl (OH) groups bound to an alkyl group's carbon atom (hydrocarbon chain)is called Alcohol. Alcohols are organic compounds of water
in which one of the hydrogen atoms has been substituted by an alkyl group, which in organic structures is usually expressed by R. - NITROBENZENE-:The organic compound nitrobenzene has the chemical formula
. It's a pale yellow oil that's insoluble in water and smells like almonds. Greenish-yellow crystals form when it freezes. It is made on a wide scale as a precursor to aniline from benzene. It is sometimes used as a solvent in the laboratory, especially for electrophilic reagents. - ELECTRON WITHDRAWING GROUP-: An electron withdrawing group (EWG) is a type of group that reduces electron density in a molecule by bonding to a carbon atom. EWGs alter a molecule's reactivity by reducing electron density on neighboring carbon atoms.
- NITRO GROUP-: The nitro group is one of the most widely used explosophores (functional groups that combine to form a compound explosive). In addition, the nitro group is a heavy electron-withdrawing group. CH bonds alpha (adjacent) to the nitro group may be acidic due to this property.
The turbine would stop generating electricity
Answer:
No because some lights we cannot see because they move to slow or they move to fast for our eye to see. There is just a small little gap compared to what light rays we can actually see. In this picture you can see what I mean.
Explanation:
Answer:-ΔG=-101.5KJ
Explanation:We have to calculate ΔG for the reaction so using the formula given in the equation we can calculate the \Delta G for the reaction.
We need to convert the unit ofΔS in terms of KJ/Kelvin as its value is given in terms of J/Kelvin
Also we need to convert the temperature in Kelvin as it is given in degree celsius.

After calculating forΔG we found that the value ofΔG is negative and its value is -101.74KJ
For a reaction to be spontaneous the value of \Delta G \ must be negative .
As the ΔG for the given reaction is is negative so the reaction will be spontaneous in nature.
In this reaction since the entropy of reaction is positive and hence when we increase the temperature term then the overall term TΔS would become more positive and hence the value of ΔG would be less negative .
Hence the value of ΔG would become more positive with the increase in temperature.
So we found the value of ΔG to be -101.74KJ