Answer:
The greatest acceleration the man can give the airplane is 0.0059 m/s².
Explanation:
Given that,
Mass of man = 85 kg
Mass of airplane = 109000 kg
Distance = 9.08
Coefficient of static friction = 0.77
We need to calculate the greatest friction force
Using formula of friction

Where, m = mass of man
g = acceleration due to gravity
Put the value into the formula


We need to calculate the acceleration
Using formula of newton's second law


Put the value into the formula


Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².
Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:
Oceanic crust and continental crust
Explanation:
A subduction zone is normally between oceanic crust which is made of basalt and continental crust which is made of granite. Oceanic crust is denser than continental crust. So when oceanic crust collides with continental crusts, it subsducts underneath the continental crust since it is denser.
Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.