The equation that would allow us to calculate for the acceleration given the distance is written below,
a = (Vf² - Vo²) / 2d
where a is the acceleration, Vf is the final velocity, Vo is the initial velocity, and d is distance.
Substituting the known values,
a = ((84 ft/s)² - (72 ft/s)²) / 2(180 ft) = 5.2 ft/s²
Then, the equation that would relate the initial velocity, distance, acceleration and time is calculated through the equation,
d = Vot + 0.5at²
Substituting the known values,
180 = 72(t) + 0.5(5.2)(t²)
The value of t from the equation is 2.3 s
<em>ANSWER: 2.3 s</em>
I believe you ask about speed at the end of the hose:
The volume of the bucket is 225 liters which is equal to 225

.

Hose's cross section can be counted with the typical circle's area formula (with diameter instead of radius, that's why you've got a fraction):


are filled within 15 second.
As the bucket is being filled you can say that it's volume is the volume of the water that flowed out of the hose, then:

The speed of the water can be counted with equation:

After extracting h from the volume's equation you get:

When you count the fraction you get the answer:
<span>B. Energy is never created nor destroyed.
</span>
Answer:
Conduction
Explanation:
Conduction. When a substance is heated, its particles gain internal energy and move more vigorously. The particles bump into nearby particles and make them vibrate more. This passes internal energy through the substance by conduction , from the hot end to the cold end.