Answer:
0.00185 °C
Explanation:
From the question,
The potential energy of the bird = heat gained by the water in the fish tank.
mgh = cm'(Δt)................... Equation 1
Where m = mass of the bird, g = acceleration due to gravity, h = height, c = specific heat capacity of water, m' = mass of water, Δt = rise in temperature of water.
make Δt the subject of the equation
Δt = mgh/cm'............... Equation 2
Given: m = 1 kg, h = 40 m, m' = 50.5 kg
constant: g = 9.8 m/s², c = 4200 J/kg.K
Substitute into equation 2
Δt = 1(40)(9.8)/(50.5×4200)
Δt = 392/212100
Δt = 0.00185 °C
Molecules Speed Up because the other three options only occur when the temperature is decreased.
Answer
given,
Pressure on the top wing = 265 m/s
speed of underneath wings = 234 m/s
mass of the airplane = 7.2 × 10³ kg
density of air = 1.29 kg/m³
using Bernoulli's equation




Applying newtons second law
2 Δ P x A - mg = 0


A = 3.53 m²
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
Answer:
real, inverted, and smaller than the object
Explanation:
When the object is placed beyond the center of curvature, the image will formed between the focus and the center of curvature. The size of the image is diminished and its nature is real and inverted.
The whole description is shown in the attached figure. It is clear that the size of the image is smaller than the object.