The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to

. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:

from which
You will use the height of the bridge from the ground.
Solution:
Formula to be used is y=Viy(t)+g(t^2)/2
Where:
Vi=initial velocity which is 0 m/s
y=10 m
Gravitational acceleration or g =9.8m/s^2
T= time you need
Substitute all the given to the formula
10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2
10mx2=9.8m/s^2(t^2)
Now isolate the variable you want to find which is T or time
10mx2/9.8m/s^2=t^2
20m/9.8m/s^2=t^2
Square root of 2.04= square root of t^2
T=1.43 secs
The answer is 1.43 seconds
Potential Energy = mass x gravitational acceleration x height
potential Energy = 1 x 9.8 x 10 = 98 joules
Answer:
75 rad/s
Explanation:
The angular acceleration is the time rate of change of angular velocity. It is given by the formula:
α(t) = d/dt[ω(t)]
Hence: ω(t) = ∫a(t) dt
Also, angular velocity is the time rate of change of displacement. It is given by:
ω(t) = d/dt[θ(t)]
θ(t) = ∫w(t) dt
θ(t) = ∫∫α(t) dtdt
Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:
θ(t) = ∫∫α(t) dtdt
θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt
θ(t) = ∫[2t³]dt = t⁴/2 rad
θ(t) = t⁴/2 rad
At θ(t) = 10 rev = (10 * 2π) rad = 20π rad, we can find t:
20π = t⁴/2
40π = t⁴
t = ⁴√40π
t = 3.348 s
ω(t) = ∫α(t) dt = ∫6t² dt = 2t³
ω(t) = 2t³
ω(3.348) = 2(3.348)³ = 75 rad/s
Base SI unit is the unit that used for simple quantity like time=second and length= meter. They only have one unit.
Derived unit is more complex because you multiply or divide at least two base SI, making it have more than 1 unit. The example could be velocity which was time/length = m/s