Answer:
Explanation:
The formula to determine the size of a capillary tube is
h = 2•T•Cos θ / r•ρ•g
Where
h = height of liquid level
T = surface tension
r = radius of capillary tube
ρ = density of liquid
θ = angle of contact = 0°
g =acceleration due to gravity=9.81m/s²
The liquid is water then,
ρ = 1000 kg / m³
Given that,
T = 0.0735 N/m
h = 0.25mm = 0.25 × 10^-3m
Then,
r = 2•T•Cos θ / h•ρ•g
r = 2 × 0.0735 × Cos0 / 2.5 × 10^-3 × 1000 × 9.81
r = 5.99 × 10^-3m
Then, r ≈ 6mm
The radius of the capillary tube is 6mm
So, the minimum size is
Volume = πr²h
Volume = π × 6² × 0.25
V = 2.83 mm³
The minimum size of the capillary tube is 2.83mm³
2m/s
it has to be 20 charecters just ignore this your answer is up there
Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:

Hey there!
<span>Which statement best summarizes Gregor Mendel’s contribution to science?
Mendel is considered the "father of genetics". He did NOT increse the number of peas </span>
<span>produced by a single plant using cross-breeding techniques, discover grean peas and yellow peas, or invent the green pea by cross-breeding thousands of pea plants.
This means your answer is option D.
Hope this helps
Have a great day (:
</span>