Answer:
-8265
Step-by-step explanation:
Answer:
36
Step-by-step explanation:
Because ABCD is a rectangle, the length of CD is 12 cm.
We need to determine the length of DE. If we can do that, then the sum of the lengths of CD and DE represents the unknown: the length of CE.
To find the length of CE, we have to "solve" the upper triangle.
Here's an outline of what to do:
1. Show that BC=AD and find the length.
2. Note that angle CAD is 60 degrees. Why?
3. Note that angle EAD is 30 degrees. Why?
4. Find the length of ED
5. Add ED and DC, that is, ED + 12 cm. This is your answer.
Please ask questions if need be.
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be