Given triangle ABC with coordinates A(−6, 4), B(−6, 1), and C(−8, 0), and its image A′B′C′ with A′(−2, 0), B′(−5, 0), and C′(−6,
Zinaida [17]
Answer:
The line of reflection is at y = x+6.
Step-by-step explanation:
The perpendicular bisector of AA' is a line with slope 1 through the midpoint of AA', which is (-4, 2). In point-slope form, the equation is ...
y = 1(x +4) +2
y = x + 6 . . . . . . . line of reflection
Answer:
The minimum number of different tanks needed to safely house all the fish is:
Step-by-step explanation:
To identify the minimum number of different tanks, we're gonna concentrate in a fish species, in this case can be the A: as you see in the table, the A species can live with all the fish excepting the F and G, by their side, the F and G can't live together , by this reason, this three species must live in a different tank, in the next form:
- Tank 1: <em>A</em>
- Tank 2: <em>F</em>
- Tank 3: <em>G</em>
Now the B species, it can live with A, F and G, but for this example we can put in the tank 1 (the tank of the A species). The C especies can live with A, F and G, but how we have A and B together, we're gonna put the C especies in the tank 3 (the tank of the G especies). The D species can live with A and G, we're gonna put in the tank 1 because can live with B species too. The E species can live with A and F, we're gonna put in the tank 2 (the tank of the F species) because the E species can't live with D that is in the in the tank 1. Al last, the H species just can live with A, E, F, and H species, by this reason, the only tank that can be put is the tank 2. In this form, the order is the next:
- Tank 1: <em>A, B, D</em>.
- Tank 2: <em>F, E, H</em>.
- Tank 3: <em>G, C</em>.
And t<u>he owner of the pet store must buy three different tanks to display these tropical fish</u>.
The question asks per week. So 1.5 cups times 7 days is 10.5 cups.
<span>The pipe leaks </span>10.5 cups<span> every week.</span>
Answer:
9
Step-by-step explanation:
Step-by-step explanation:
1) Ans 3
2) Ans 6
3) Ans 4
4) Ans 1/5
5) Ans 1/23