14 because i did the math and i was right
Answer: This does not represent an SRS because each group of patients chosen does not have an equally likely chance of being chosen.
Answer:
I'm pretty sure that it's -i
Answer:
Probability of having at least 4 Girls
= 0.6875
Step-by-step explanation:
Probability of having at least 4 Girls is 1-probability of having exactly 3 girls
Total number of children= 5 = N
Probability of having a girl p = 0.5
Probability of not having a girl q= 0.5
X= 3
Probability of at least 4 girls is given by
Probability= NCX(p)^x(q)^(N-x)
Probability = 5C3(0.5)^3(0.5)^(5-3)
Probability = 5C3(0.5)^3(0.5)^2
Probability= 5!/3!2!(0.5)^3(0.5)^2
Probability= 10(0.125)(0.25)
Probability= 0.3125
Probability of having at least 4 Girls
= 1- 0.3125
= 0.6875
The answer is B because the formula would be 850+(415*24) and the sum of that would be 10810.