1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
4 years ago
13

Tell me if all of these problems are correct?

Mathematics
1 answer:
katrin [286]4 years ago
8 0
Yes I think it is correct
You might be interested in
Consider Statement A and Statement B below:
wlad13 [49]

Answer:

These two statements are equivalent because statement A is the contrapositive of statement B.

Step-by-step explanation:

In logic, when we have an "if" statement we can have its contrapositive or its converse.

Given a "if p, then q" (p is the hypothesis and q is the conclusion), the converse is "if q, then p", in other words, we interchange the hypothesis and the conclusion.

Now, given a "if p, then q", the contrapositive is "if not q, then not p". In other words, we take the negation of both the hypothesis and the conclusion and then we interchange them.

Now, let's take a look at our statements:

<em>If a and b are two real numbers, and if ab = 0, then either a = 0 or b = 0.</em>

In this case:

p = a and b are two real numbers and ab=0

q = either a = 0 or b = 0

Now, let's take the negative of p and q:

The negative of p would be: <em>a and b are two real numbers and their product is not zero.</em>

The negative of q would be: <em>neither of the two real numbers is zero</em>

Now, given than the contrapositive is "if not q, then not p" we would have:

If neither of two real numbers is zero, then their product is not zero.

We can see that this last sentence is the contrapositive of the first one and thus:

These two statements are equivalent because statement A is the contrapositive of statement B.

3 0
3 years ago
This is due like right now, please help me!!!!
Varvara68 [4.7K]

\bold{\huge{\orange{\underline{ Solution }}}}

\bold{\underline{ Given \: Rules}}

  • <u>The </u><u>sum</u><u> </u><u>of </u><u>the </u><u>number </u><u>in </u><u>each </u><u>of </u><u>the </u><u>four </u><u>rows </u><u>is </u><u>the </u><u>same </u>
  • <u>The </u><u>sum </u><u>of </u><u>the </u><u>numbers </u><u>in </u><u>each </u><u>of </u><u>the </u><u>three </u><u>columns </u><u>is </u><u>the </u><u>same</u>
  • <u>The </u><u>sum </u><u>of </u><u>any </u><u>row </u><u>does </u><u>not </u><u>equal </u><u>the </u><u>sum </u><u>of </u><u>any </u><u>column </u>

\bold{\underline{ Let's \: Begin}}

<u>According </u><u>to </u><u>the </u><u>Second</u><u> </u><u>rule </u><u>:</u><u>-</u>

\sf{ 75+b+83=76+80+d=a+81+85+78+c+e }

\sf{ 158 + b = 156 + d = 166 + a = 78 + c + e ...(1)}

<u>According </u><u>to </u><u>the </u><u>first </u><u>rule </u><u>:</u><u>-</u><u> </u>

\sf{ 75+76+a+78 = b+80+81+c = 83+86+d+e}

\sf{ 229 + a = 161 + b + c = 168 + d + e ...(2)}

<u>From </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>got </u><u>:</u><u>-</u>

\sf{ 158 + b = 166 + a, 156 + d = 166 + a }

\sf{ b = 166 - 158 + a,  d = 166 - 156 + a }

\sf{ b = 8 + a,  d = 10 + a ...(3)}

<u>Subsitute </u><u>(</u><u>3</u><u>)</u><u> </u><u>in </u><u>(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>

\sf{229+a = 161+8+a+c = 168+10+a+e}

\sf{ 229+a = 169+a+c = 178+a+e}

<u>We</u><u> </u><u>can </u><u>write </u><u>it </u><u>as </u><u>:</u><u>-</u>

\sf{ 229+a = 169+a+c \:or\:229+a = 178+a+e}

\sf{ c = 299-169+a-a\:or\:e = 229-178+a-a}

\sf{ c = 60 \: and \: e = 51 }

<u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>c </u><u>and </u><u>e </u><u>in </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>

\sf{ 158 + b = 156 + d = 166 + a = 78 + 60 + 51 }

\sf{ 158 + b = 156 + d = 166 + a = 189}

<u>Now</u><u>, </u>

\sf{ For \: b,  158 + b = 189 }

\sf{ b = 189 - 158 }

\sf{ b = 31}

\sf{ For \: d ,  156 + b = 189 }

\sf{ d = 189 - 156 }

\sf{ d = 33}

\sf{ For \: a,  166 + a = 189 }

\sf{ a = 189 - 166 }

\sf{ a = 23 }

Hence, The value of a, b, c, d and e is 23, 31 ,60 ,33 and 51 .

8 0
3 years ago
Please help with this question
Mars2501 [29]
To find out one book you have to divide 65 by 5

65/5 = 13

The answer is $13 per book
3 0
3 years ago
Read 2 more answers
8748=75x^2/5^2<br> what is x<br> no explaining needed
NARA [144]
Variable 

i did not know bout dis edit ting
8 0
3 years ago
8 in.<br> 8 in.<br> 8 in.<br> Find the area of the figure above.<br> [?] in2
RideAnS [48]

Answer:

96

Step-by-step explanation:

Total area = area of cube + area of triangle

A = 8² +  = 64 + 32 = 96 in

5 0
3 years ago
Other questions:
  • 64/7 as a mixed number
    10·2 answers
  • Need help with this geometry poblem
    8·1 answer
  • PLEASE ANSWER FAST WILL MARK BRAINLIEST!!! <br> please answer all to get brainliest!
    7·2 answers
  • A survey claims that 9 out of 10 doctors recommend aspirin for their patients with headaches. to test this claim against the alt
    13·2 answers
  • 56 is 25% of what number<br><br> please answer
    5·1 answer
  • The independent variable is shown on the x-axis.what quantity is the independent variable
    5·1 answer
  • Find the area of each figure. Round to the nearest hundredth where necessary.
    7·1 answer
  • Can you guys help me please ASAP
    15·1 answer
  • Formula of circumference​
    6·2 answers
  • Write the quadratic equation the has the roots (-1-√2)/3 and (-1+√2)/3 if its coefficient with x^2 is equal to...1
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!