Answer:
The
of a substrate will be "10 μM".
Explanation:
The given values are:

![[Substract] = 40 \ \mu M](https://tex.z-dn.net/?f=%5BSubstract%5D%20%3D%2040%20%5C%20%5Cmu%20M)

Reaction velocity, 
As we know,
⇒ ![Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}](https://tex.z-dn.net/?f=Vo%3D%5Cfrac%7BK_%7Bcat%7D%5BE_%7Bt%7D%5D%5BS%5D%7D%7BK_%7Bm%7D%2B%5BS%5D%7D)
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
On subtracting "40" from both sides, we get
⇒ 
⇒ 
Answer:
the final product is called a product
Explanation:
Potassium 23.5g/39.0983g/mol = 0.601mol
The Ratio of reactants is 2 to 1 so (0.601mol)/2 = 0.3005mol
Therefore 0.3005mol of F2 is needed to find liters use
formula V = nRT/P (V)Volume = 22.41L
(T)Temperature = 273K or 0.0 Celsius
(P)Pressure = 1.0atm
<span>(R)value is always .08206 with atm n = 0.3005moles
(273)(.08206)(0.3005)/1 = V V = 6.7319 Liters</span>
Answer:
1.
A= <u>sum</u><u>(</u><u>mass</u><u>*</u><u>percent</u><u> </u><u>abundance</u><u>)</u>
M 100
=(23.985*78.70)+(24.946*10.13)+(25.983*11.17)/100
= 24.3
2. The element is Magnesium.
3. 2412Mg,2512Mg and 2612Mg
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL