Its magnifying power is: 4X 5X 9X 20X. A 4-inch, f/5 telescope has a 1-inch eyepiece focal. Its magnifying power is 9x. This answer has been confirmed as correct and helpful.
Answer:
The 20th century saw huge advances in our understanding and use of the nucleus. For instance, in 1939 scientists Otto Hahn, Lise Meitner and Otto Frisch discovered nuclear fission – a process by which radioactive materials release energy when they are induced to split.
Realising the huge amount of energy that such a reaction produces, scientists were tasked with developing this new knowledge initially for harm in nuclear weapons. Just six years after fission’s discovery, it was harnessed in the atom bombs that destroyed the Japanese cities Hiroshima and Nagasaki, and controversially ended the Second World War. Later, much more powerful hydrogen bombs were developed that combined fission with the process powering the Sun – fusion.
Hope this helps! PLEASE GIVE ME BRAINLIEST!!!!! =)
Answer:
i = 2.483
Explanation:
The vapour pressure lowering formula is:
Pₐ = Xₐ×P⁰ₐ <em>(1)</em>
For electrolytes:
Pₐ = nH₂O / (nH₂O + inMgCl₂)×P⁰ₐ
Where:
Pₐ is vapor pressure of solution (<em>0.3624atm</em>), nH₂O are moles of water, nMgCl₂ are moles of MgCl₂, i is Van't Hoff Factor, Xₐ is mole fraction of solvent and P⁰ₐ is pressure of pure solvent (<em>0.3804atm</em>)
4.5701g of MgCl₂ are:
4.5701g ₓ (1mol / 95.211g) = 0.048000 moles
43.238g of water are:
43.238g ₓ (1mol / 18.015g) = 2.400 moles
Replacing in (1):
0.3624atm = 2,4mol / (2.4mol + i*0.048mol)×0.3804atm
0.3624atm / 0.3804atm = 2,4mol / (2.4mol + i*0.048mol)
2.4mol + i*0.048mol = 2.4mol / 0.9527
2.4mol + i*0.048mol = 2.5192mol
i*0.048mol = 2.5192mol - 2.4mol
i = 0.1192mol / 0.048mol
<em>i = 2.483</em>
<em />
I hope it helps!
A gas can move around freely while a solid is hard and can’t move around freely