We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.
Answer:
shirt is little attached to the body, it can come off and fly away
Explanation:
In electrostatics, charges of different signs attract and charges of the same sign repel.
In this case, when a negative charge is placed on it, both the inventor and the shirt are charged, therefore there is a repulsive force, also there is an attraction between the positive charge of the roof attracts the negative charge, such as the shirt. of weak the two forces not greater than the resistance of the walk.
As the shirt is little attached to the body, it can come off and fly away
<u>Answer:</u>
The power and voltage are related through Power Rule
.
<u>
Explanation :
</u>
Power Rule states that the current I that flows the element in the circuit with a loss in voltage V, then the amount of power dissipated by that element in the circuit is the multiplicative product of voltage and the current.
Mathematically, power law is

The rate of work done or the rate of energy consumption or production is termed as power.Unit of power is denoted as W(watts).
Potential energy between any two points on a circuit is called as Voltage and is measured in volts (V)
.
Answer:
Explanation:
In order to answer this problem you have to know the depth of the column, we say R, this information is important because allows you to compute some harmonic of the tube. With this information you can compute the depth of the colum of air, by taking tino account that the new depth is R-L.
To find the fundamental mode you use:

n: mode of the sound
vs: sound speed
L: length of the column of air in the tube.
A) The fundamental mode id obtained for n=1:

B) For the 3rd harmonic you have:

C) For the 2nd harmonic:

Able to be hammered or pressed permanently out of shape without breaking or cracking.