Answer: gravitational potential energy is converted into kinetic energy
Explanation:
When the diver stands on the platform, at 20 m above the surface of the water, he has some gravitational potential energy, which is given by

where m is the man's mass, g is the gravitational acceleration and h is the height above the water. As he jumps, the gravitational potential energy starts decreasing, because its height h above the water decreases, and he acquires kinetic energy, which is given by

where v is the speed of the diver, which is increasing. When he touches the water, all the initial gravitational potential energy has been converted into kinetic energy.
Answer:
Explanation:
The angle of incidence and refraction are both measured from the normal
angle of incidence = 30°
angle of refraction = 23°
refractive index(n) = sini / sinr
n = sin30°/sin23°
n = 1.27965
refractive index (n) = 1/sinC
where C is the critical angle.
sinC= 1/n
C =arcsin (1/n)
C =arcsin (1/1.27965)
C = 51.39°
(a) Equating centripetal force to friction force, one finds the relation
v² = kar
for car speed v, coefficient of friction k, radius of curvature r, and downward acceleration a.
There is already downward acceleration due to gravity. The additional accceleration due to the wing is
a = F/m = 10600 N/(805 kg) ≈ 13.1677 m/s²
We presume this is added to the 9.80 m/s² gravity provides, so the coefficient of friction is
k = v²/(ar) = (54 m/s)²/((13.1677 m/s² +9.80 m/s²)·(155 m))
k ≈ 0.8191
(b) The maximum speed is proportional to the square root of the downward acceleration. Changing that by a factor of 9.80/(9.80+13.17) changes the maximum speed by the square root of this factor.
max speed with no wing effect = (54 m/s)√(9.8/22.97) ≈ 35.27 m/s
Answer:
F = 400 N
Explanation:
Given,
The acceleration of the car, a = 8 m/s²
The mass of the passenger, m = 50 Kg
The force acting on a body is equal to the product of the mass and its acceleration
F = m x a newtons
Substituting the given values in the above equation,
F = 50 Kg x 8 m/s²
= 400 N
Hence, the force exerted by the person on the seat belt is, F = 400 N
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.