Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
Answer:
37.8 m
Explanation:
At point 0, the ball is at height y₀.
At point 1, the ball is at height 30 m.
At point 2, the ball is at height 0 m.
Given:
y₁ = 30 m
y₂ = 0 m
v₀ = 0 m/s
a = -10 m/s²
t₂ − t₁ = 1.5 s
Find: y₀
Use constant acceleration equation.
y = y₀ + v₀ t + ½ at²
Evaluate at point 1.
y₁ = y₀ + v₀ t₁ + ½ at₁²
30 m = y₀ + (0 m/s) t₁ + ½ (-10 m/s²) t₁²
30 = y₀ − 5t₁²
Evaluate at point 2.
y₂ = y₀ + v₀ t₂ + ½ at₂²
0 m = y₀ + (0 m/s) t₂ + ½ (-10 m/s²) t₂²
0 = y₀ − 5t₂²
y₀ = 5t₂²
Substitute:
y₀ = 5 (1.5 + t₁)²
y₀ = 5 (2.25 + 3t₁ + t₁²)
y₀ = 11.25 + 15t₁ + 5t₁²
30 = 11.25 + 15t₁ + 5t₁² − 5t₁²
30 = 11.25 + 15t₁
t₁ = 1.25
30 = y₀ − 5t₁²
30 = y₀ − 5(1.25)²
y₀ ≈ 37.8
Answer:
For the car to move with constant velocity the additional force required is 
Explanation:
From the question we are told that
The net force of the car is 
Generally the total force acting on the car is the net force plus the force due to gravity acting in direction of the car (Let denote it as
)
So the total force acting on the car is mathematically represented as

Here this F representing the total force can be mathematically represented as

Now for constant velocity to be attained, the acceleration of the car will be zero
So at constant velocity

=> 
So

=> 
=> 
Answer:
11.479 kilometres per litre
Explanation:
for an approximate result, divide the fuel economy value by 2.352