The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1
Due to difference in electric potential.
<h3>What is Potential difference?</h3>
The amount of work in an electrical field to move a unit charge from one place to another is known as the electrical potential difference.
Here , the potential difference is the difference in electric potential between two charged substances.
Current is the flow of charges from one end end to another end of a conducting wire connected across a two terminals of a battery.
The potential difference is [provided by the battery across the two terminals due which the charges flow.
Current flow is from positive to negative terminals, indicating the movement of positive charges in that direction.
Hence , potential difference causes the electric charges to flow from one end of the battery .
Learn more about the flow of current : brainly.com/question/2264542
#SPJ1
Answer:
1.67 m/s
Explanation:
Momentum is conserved.
Initial momentum = final momentum
(30 kg) (10 m/s) + (35 kg) (-10 m/s) = (30 kg) v + (35 kg) (0 m/s)
300 - 350 = 30v
v = -5/3 m/s
Linus will move at 1.67 m/s in the direction opposite that he started.
Answer: the image distance is -18, 28 cm this means behind of the concave mirror. The image size is 2.2 higher that the original so it has 8.8 cm with the same orientation as original and it is a virtual imagen.
Explanation: In order to sove the imagen formation for a concave mirror we have to use the following equation:
1/p+1/q=1/f where p and q represents the distance to the mirror for the object and imagen, respectively. f is the focal length for the concave mirror.
replacing the values we obtain:
1/8.3+1/q=1/15.2
so 1/q=(1/15.2)-(1/8.3)=-54.7*10^-3
then q=-18.28 cm
The magnification is given by M=-q/p=-(-18,28)/8.3= 2.2
We also add a picture to see the imagen formation for this case.