AgNO3(aq) + KCl (aq)-----> AgCl(s) + KNO3(aq)
Ag ^+(aq) + NO3^-(aq) + K^+ (aq) + cl^- (aq) ----> AgCl(s) + K^+(aq) + NO3^-(aq)
net ionic equation
Ag ^+(aq) + Cl^-(aq) ----> AgCl(s)
Red blood cells carry oxygen throughout the human body
Answer:
a) pH will be 12.398
b) pH will be 4.82.
Explanation:
a) The moles of NaOH added = molarity X volume (L) = 2 X 0.01 = 0.02 moles
The total volume after addition of pure water = 0.780+0.01 = 0.79 L
The new concentration of /NaOH will be:

the [OH⁻] = 0.025
pOH = -log [OH⁻] = 1.602
pH = 14 -pOH = 12.398
b) The buffer has butanoic acid and butanoate ion.
i) Before addition of NaOH the pH will be calculated using Henderson Hassalbalch's equation:
![pH=pKa+log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
pKa=
ii) on addition of base the pH will increase.
Answer:
The equilibrium for hydrate formation depends both on steric and electrical factors of the carbonyl as discussed in the previous section. In most cases the resulting gem-diol is unstable relative to the reactants and cannot be isolated. Exceptions to this rule exist, one being formaldehyde where the small size of the hydrogen substituents relative to aldehydes and ketones favor hydrate formation. Thus, a solution of formaldehyde in water (formalin) is almost exclusively the hydrate, or polymers of the hydrate. The addition of electron donating alkyl groups stabilized the partial positive charge on the carbonyl carbon and decreases the amount of gem-diol product at equilibrium. Because of this ketones tend to form less than 1% of the hydrate at equilibrium.
Explanation:
Answer:

Given:
Mass = 11.29 g
Volume = 2 cm³
To Find:
Density of unknown metal
Explanation:
Formula:

Substituting value of mass & volume in the formula:
