Is balancing .
Hope this is helpful
Answer:
s = 30330.7 m = 30.33 km
Explanation:
First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:
v = v₀√[T/273 k]
where,
v = speed of sound at given temperature = ?
v₀ = speed of sound at 0°C = 331 m/s
T = Given Temperature = 10°C + 273 = 283 k
Therefore,
v = (331 m/s)√[283 k/273 k]
v = 337 m/s
Now, we use the following formula to calculate the distance traveled by sound:
s = vt
where,
s = distance traveled = ?
t = time taken = 90 s
Therefore,
s = (337 m/s)(90 s)
<u>s = 30330.7 m = 30.33 km</u>
The tension in the string corresponds to the gravitational attraction between the Sun and any planet.
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
Answer: Air
Explanation: Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Air and hydrogen have nearly the same elastic properties, but the density of hydrogen is less than that of air. Sound thus travels faster (about 4 times as fast) in hydrogen than in air.