The speed of the wave created by Linh in the spring by moving the other end right and left with a frequency of 2 Hz is 1m/s.
<h3>How to calculate speed of a wave?</h3>
The speed of a wave can be calculated by using the following formula:
Speed = Wavelength x Frequency
According to this question, Linh creates waves in the spring by moving the other end right and left with a frequency of 2 Hz. If wave crests are 0.5 m apart, the speed can be calculated as follows:
speed = 2Hz × 0.5m
speed = 1m/s
Therefore, the speed of the wave created by Linh in the spring by moving the other end right and left with a frequency of 2 Hz is 1m/s.
Learn more about speed at: brainly.com/question/10715783
#SPJ1
Answer:
The speed of the water is 14.68 m/s.
Explanation:
Given that,
Time = 30 minutes
Distance = 11.0 m
Pressure = 101.3 kPa
Density of water = 1000 kg/m³
We need to calculate the speed of the water
Using equation of motion

Where, u = speed of water
g = acceleration due to gravity
h = height
Put the value into the formula



Hence, The speed of the water is 14.68 m/s.
Answer:
Explanation:
Given that,
Mass of the heavier car m_1 = 1750 kg
Mass of the lighter car m_2 = 1350 kg
The speed of the lighter car just after collision can be represented as follows


b) the change in the combined kinetic energy of the two-car system during this collision

substitute the value in the equation above

Hence, the change in combine kinetic energy is -2534.78J
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg