Answer:
= 4.86 s
= 1.98 s
Explanation:
<u><em>Given:</em></u>
Length = l = 1 m
Acceleration due to gravity of moon =
= 1.67 m/s²
Acceleration due to gravity of Earth =
= 10 m/s²
<u><em>Required:</em></u>
Time period = T = ?
<u><em>Formula:</em></u>
T = 2π 
<u><em>Solution:</em></u>
<u>For moon</u>
<em>Putting the givens,</em>
T = 2(3.14) 
T = 6.3 
T = 6.3 × 0.77
T = 4.86 sec
<u>For Earth,</u>
<em>Putting the givens</em>
T = 2π 
T = 2(3.14) 
T = 6.3 × 0.32
T = 1.98 sec
7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.
Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.
λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.
An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:
λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)
λ = 7.5 x 10⁻¹¹m
<span>The answer is -0.8 m/s. We know acceleration is the average of final minus initial velocity over time (a = (vf-v0)/t). We also know that Force is equal to Mass times Acceleration (F = ma). Using our force equation, we know that the acceleration we get is negative 8.8 (-8.8). The force is acting in the opposite direction of the rugby player, hence the negative sign. From there, plug in that number for a in the velocity equation, and solve for vf, as v0 and t are known. We get 0.8 m/s in the opposite direction that the player was running.</span>
The statement "<span>The motion of a pendulum for which the maximum displacement from equilibrium does not change is an example of simple harmonic motion." is true.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>