Answer:
The acceleration of the wallet is 
Explanation:
Given that,
Radius of purse r= 2.30 m
Radius of wallet r'= 3.45 m
Acceleration of the purse 
We need to calculate the acceleration of the wallet
Using formula of acceleration

Both the purse and wallet have same angular velocity








Hence, The acceleration of the wallet is 
Answer:
A metalloid is used because it is a semiconductor and can become more conductive when more light shines on it
Explanation:
The material used in a solar panel is a metalloid. It can often become conductive when more light shines on it.
Metalloids have properties that straddles between those of metals and non-metals.
In essence, they can be conductive or not under certain conditions.
The most important property they exhibit is that they can become more conductive when more light shines on them. This way more electrons are produced.
Answer:
at resonance impedence is equal to resistance and quality factor is dependent on R L AND C all
Explanation:
we know that for series RLC circuit impedance is given by

but we know that at resonance
putting
in impedance formula , impedance will become
Z=R so at resonance impedance of series RLC is equal to resistance only
now quality factor of series resonance is given by
so from given expression it is clear that quality factor depends on R L and C
Replaces spring 2. the mass of the weight and pulley are unchanged: m=5.8 kg and mp=1.7 kg
Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle.
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet