The answer to this is: a molecule
C. water
answer a has one sodium atom and one chlorine atom
answer b is a chemical reaction
answer d has only one hydrogen atom and one oxygen atom
You'll hear that force called different things in different places. It
may be called "electromotive force", "EMF", "potential difference",
or "voltage".
It's just a matter of somehow causing the two ends of the wire
to have different electrical potential. When that happens, the
free electrons in the copper suddenly have a burning desire to
travel ... away from the end that's more negative, toward the end
that's more positive, and THAT's an "electric current".
Answer:
The force required to hold the contraction in place is 665.91 N ↑
Explanation:
Given;
specific gravity of oil, γ = 0.75
Volumetric flow rate, V 3.2 Ft³/s = 0.0906 m³/s

where;
is the density of oil
is the density of water = 1000 kg/m³
∴density of oil (
) = γ × density of water(
)
= 0.75 × 1000 kg/m³
= 750kg/m³
Buoyant Force = ρVg
= 750 × 0.0906 × 9.8
= 665.91 N ↑
This force acts upward or opposite gravitational force.
Therefore, the force required to hold the contraction in place is 665.91 N ↑
The atmospheric P is greater than the P in the flask, since
the Hg level is lacking down lower on the side open to the atmosphere.
43.4 cm x (10 mm / 1 cm) = 435 mm
the density of Hg is 13.6 / 0.791 = 17.2 times better than the liquid in the
manometer. This means that 1 mmHg = 17.2 mm of manometer liquid.
435 mm manometer liquid x (1 mm Hg / 17.2 mm manometer liquid) = 25.3 mm
Hg
The pressure in the flask is 755 - 25.3 = 729.7 mmHg.
729.7 mmHg x (1 atm / 760 mmHg ) = 0.960 atm.