Answer:
pH at equivalence point is 8.52
Explanation:

1 mol of HCOOH reacts with 1 mol of NaOH to produce 1 mol of 
So, moles of NaOH used to reach equivalence point equal to number of moles
produced at equivalence point.
As density of water is 1g/mL, therefore molarity is equal to molality of an aqueous solution.
So, moles of
produced = 
Total volume of solution at equivalence point = (25+29.80) mL = 54.80 mL
So, at equivalence point concentration of
= 
At equivalence point, pH depends upon hydrolysis of
. So, we have to construct an ICE table.

I: 0.1940 0 0
C: -x +x +x
E: 0.1940-x x x
So, ![\frac{[HCOOH][OH^{-}]}{[HCOO^{-}]}=K_{b}(HCOO^{-})=\frac{10^{-14}}{Ka(HCOOH)}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHCOOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BHCOO%5E%7B-%7D%5D%7D%3DK_%7Bb%7D%28HCOO%5E%7B-%7D%29%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7BKa%28HCOOH%29%7D)
species inside third bracket represent equilibrium concentrations
So, 
or,
So, 
So, 
So, ![pH=14-pOH=14+log[OH^{-}]=14+logx=14+log(3.285\times 10^{-6})=8.52](https://tex.z-dn.net/?f=pH%3D14-pOH%3D14%2Blog%5BOH%5E%7B-%7D%5D%3D14%2Blogx%3D14%2Blog%283.285%5Ctimes%2010%5E%7B-6%7D%29%3D8.52)
A neutralization reaction is in essence a reaction between an acid an a base which usually results in pH neutral compounds being formed (a salt and water). Therefor the answer would be OPTION A (<span>base + acid → salt + water)</span>
Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
11.2
Step-by-step-explanation